▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Einführung in freie statistische Software

Christian Reinboth, Dipl.-Wi.Inf.(FH)

Sommersemester 2017

Bachelorstudiengang Betriebswirtschaftslehre

Agenda

– Einführung

- Motivation
- Freie Software
- PAST-Grundlagen
- Deskriptive Statistik
 - Lagemaße
 - Streuungsmaße
 - Ausreißeridentifikation
 - Korrelationskoeffizienten

- Explorative Statistik
 - Box-Plot
- Induktive Statistik
 - Lineare Regression
- Was kann andere (freie) Software?
- Kleine Vorschau auf Statistik II

Wichtiger Hinweisfür alle, die diese Folien "nur" lesen

- Dieser Foliensatz ergänzt die Vorlesung "Statistik" im berufsbegleitenden Bachelor-Studiengang Betriebswirtschaftslehre an der Hochschule Harz
- Dieser Foliensatz beinhaltet Übungen und Software-Tutorials für den Umgang mit der statistischen Analysesoftware PAST
 aber keine Wiederholung theoretischer Grundlagen
- Wer nach einer Einführung in die Grundlagen der Statistik sucht, sei deshalb auf den Hauptfoliensatz zu dieser Vorlesung verwiesen

Download des Hauptfoliensatzes unter: https://www.hs-harz.de/creinboth/lehre/

Warum eine gesonderte Software-Einführung? (Nur weil wir nicht per Hand rechnen wollen?)

L.							
<u></u>	v2 Einkommen						1
	Wertelabels	Codes		Anzahl%	insgesamt%	von gültig	∋n
	1980 - 2456 2457 - 2933 3411 - 3888	1 2 4		13 7 2	59.1 31.8 9.1	59.1 31.8 9.1	
+ ‡+	Summe			22	100.0	100.0	
	Eingeschlossen	sind 22	von	insgesa	unt 22 Fälle	en	
A							
?							

- Praxisnah: In keinem Betrieb würde eine lineare Regressionsanalyse noch "per Hand" durchgeführt
- Vorbereitung: Wer im Rahmen der BA empirisch arbeiten möchte, wird hierfür Software einsetzen müssen

Und warum freie Software?

- Eine einfache SPSS-Lizenz kostet
 1.168,00 EUR pro User und Jahr
- Freie Software ist ohne Kosten in Studium und Beruf einsetzbar

Was ist SPSS? Statistical Package for Social Sciences

- SPSS ist eines der marktführenden Softwareprodukte für statistische Analysen in der Sozial- und Gesundheitswissenschaft sowie in der Markt- und Meinungsforschung
- Es wurde 1983 von SPSS Inc., einer Ausgründung der Stanford University, entwickelt
- Der Name wechselte mehrfach von "Statistical Package for Social Sciences" über "Superior Performing Software System" und "Predictive Analysis Software" (PASW) bis zu IBM SPSS STATISTICS seit der Übernahme von SPSS Inc. durch IBM in 2009

www.ibm.com/software/de/analytics/spss/

Empfehlenswerte freie Statistik-Software (Kategorie: Allgemeine Datenanalyse)

PAST (Windows, Mac)

Paleontological Statistics Software
 Package for Education and Data Analysis
 (Universities of Copenhagen and Oslo)

http://folk.uio.no/ohammer/past/

▲ Hochschule Harz Hochschule für angewandte Wissenschaften

₽	a 1 3	ð ä	٩	Fälle s <u>o</u>	ortieren
9 : Var000)2		Transp	onieren	
Fall	Var0001	Var0002	82	Aggreg	jieren
1	32,00	34,00	=	Datei a	ufte <u>i</u> len
2	34,00	34,00		Fälle au	u <u>s</u> wählen
3	23,00	34,00	শ্রু	le ge <u>اا</u> چ	ewichten
4	243,00	34,00			
5	334,00	43,00			
6	43,00	34,00			
7	34,00	34,00			
8	43,00	34,00			
9	43,00	44,00			
10					1

PSPP (Windows, Mac, Linux)

- Open Source-"Nachbau" von SPSS
- Identische Funktionen und Bedienung, "Look & Feel" ist sehr gut vergleichbar

https://www.gnu.org/software/pspp/

21 22 23 24 25

SSP (Windows, Mac)

- Smith's Statistical Package
- "Ein-Mann-Entwicklung" von Prof.
 Gary Smith vom Pomona College

http://economics-files.pomona.edu/ GarySmith/StatSite/ssp.html

Empfehlenswerte freie Statistik-Software (Kategorie: Spezielle Anforderungen)

Age

JASP (Windows, Mac, Linux)

- Just Another Stats Program
- Bietet liquiden Output, der sich mit jedem Klick ändert (ideal für Lerner)

https://jasp-stats.org

SOFA (Windows, Mac, Linux)

- Statistics Open For All
- Bietet vielfältige Möglichkeiten der grafischen Aufbereitung von Daten

http://www.sofastatistics.com

MacANOVA (Windows, Mac, Linux)

- Entwickelt an der Uni Minnesota
- Der Schwerpunkt der Software liegt auf der Varianzanalyse (ANOVA)

http://www.stat.umn.edu/macanova/

▲ Hochschule Harz Hochschule für angewandte Wissenschaften

Unser zentraler Beispieldatensatz

(bereits aus der Hauptvorlesung bekannt)

Ausprägung	abs. Häufigkeit	rel. Häufigkeit	in %
20 Jahre	3	0,12	12,00%
21 Jahre	2	0,08	8,00%
22 Jahre	1	0,04	4,00%
23 Jahre	3	0,12	12,00%
24 Jahre	13	0,52	52,00%
25 Jahre	2	0,08	8,00%
26 Jahre	0	0,00	0,00%
27 Jahre	1	0,04	4,00%
Σ	25	1,00	100,00%
Wie bekomn Daten nur	nen wir diese n in PAST?		

Eingabe von Daten in PAST

Show Click mode Edit View Row attributes Select % Cut Paste Band							View Bands	> File > New (Anlegen einer neuer												
Column attributes	 Drag rows 	/columns	È	Сору	Sele	ct all	Black/white	e (1/0)	> File > Save as (Speichern einer Datei)											
Alter	В	С	D	E		F	G	н												
• 20									Show > Column attributes (Namen, Ska											
• 20																				
• 20																				
• 21																				
• 21																				
• 22																				
• 23																				
• 23																				
• 23																				
• 24																				
• 24																				
• 24																				
s • 24																				
• 24																				
• 24																				
• 24																				
• 24																				
• 24																				
• 24																				
• 24																				
• 24																				
• 25																				
• 25																				
• 27																				
•																				
•																				
•																				
•																				

Wo befinden wir uns?

Hochschule für angewandte Wissenschaften

Christian Reinboth, Dipl.-Wi.Inf.(FH) Fachbereich Wirtschaftswissenschaften

Lagemaße und Streuungsmaße

> Univariate > Summary statistics

Was ist hier was?

N = Anzahl der Werte Min = kleinster Wert Max = größter Wert

Mean = arithmetisches Mittel Geom. mean = Geometrisches Mittel

25 prcentil = Unteres Perzentil Median = Mittleres Perzentil 75 prcentil = Oberes Perzentil

Variance = Varianz Stand dev. = Standardabweichung

🧶 Univariate s	tatistics		- 🗆 X
	Alter		
N	25		
Min	20	-	Bootstrap
Max	27	-	Pootstrap tupo
Sum	582	-	Simple V
Mean	23,28		simple v
Std. error	0,344093		
Variance	2,96		Bootstrap N:
Stand. dev	1,720465		9999
Median	24		
25 prcntil	22,5		Recompute
75 prcntil	24		Necompute
Skewness	-0,5800429	_	
Kurtosis	0,3510287		
Geom. mean	23,21694	-	
Coeff. var	7,390314	_	
		a	
🚷 Close		Copy 📕 Print	

Das "SPSS-Analyseproblem"

- Software führt <u>JEDE</u> Analyse unabhängig von den Voraussetzungen durch!
- ...also auch die Berechnung des arithmetischen Mittels
 - ... aus Schulnoten
 - ... aus Geschlechtern
 - ... aus Kontonummern
 - ... aus Telefonnummern
 - ... aus Präferenzrängen

- Die fachlichen Kenntnisse der Anwender/innen sind daher entscheidend
- Darum: <u>KEINE</u> Analyse ohne vorherige Prüfung der Voraussetzungen!

Warum ergeben sich andere Streuungsmaße?

 In der Vorlesung haben wir die Standardvarianz als Durchschnitt der quadrierten Abweichungen berechnet:

 $-s^2 = 2,8416 | s = 1,6875$

 Mit Hilfe von PAST berechnen wir die sog. Stichprobenvarianz mit den Freiheitsgraden (n-1) im Vorfaktor:

$$-s^2 = 2,96 | s = 1,72$$

 $s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$

Ist die Wahl der Formel eher für große oder eher für kleine Datensätze relevant?

Gibt es einen Modus?

> Plot > Histogram

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Folgt die Verteilung einer Normalverteilung?

> Plot > Histogram

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Lässt sich die Grafik noch individualisieren?

Bivariater Datensatz für Korrelationsanalysen

(ebenfalls aus der Hauptvorlesung bekannt)

Befragte/r	Größe (m)	Gewicht (kg)
1	1,55	64
2	1,68	72
3	1,72	71
4	1,73	75
5	1,82	102
6	1,81	98
7	1,66	71
8	1,78	78
9	1,73	77
10	1,59	69

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Ist ein Zusammenhang grafisch plausibel?

> Plot > XY graph

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Berechnung von Korrelationskoeffizienten

> Univariate > Correlation

Korrelation ist nicht gleich Kausalität

- Eine über einen Korrelationskoeffizienten identifizierte Korrelation sollte näher untersucht, dabei jedoch niemals inhaltlich interpretiert werden
- Grund dafür ist, dass eine Korrelation nicht notwendigerweise auf einem Ursache-Wirkungs-Zusammenhang beruht – auch wenn es in vielen Fällen leider äußerst verführerisch ist, diese Annahme zu treffen
- Tatsächlich kann es verschiedene Erklärungen für Korrelationen geben
 - Einseitiger Zusammenhang: X beeinflusst Y bzw. Y beeinflusst X
 - Beidseitiger Zusammenhang: X und Y beeinflussen sich gegenseitig
 - Es handelt sich um einen reinen Zufallseffekt in den Daten (Scheinkorrelation)
 - Eine dritte Variable (Z) beeinflusst X und Y gleichermaßen (Scheinkorrelation)
- Ein klassisches Beispiel f
 ür eine Scheinkorrelation ist die Korrelation zwischen Storchenzahl und Geburtenquote (verbunden
 über die Variable "Urbanisierung")

Wo befinden wir uns?

Erstellung eines Box-Plots

> Plot > Barchart/Boxplot

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Erstellung vergleichender Box-Plots (nach Erweiterung des Datensatzes)

🥭 Altersgru	ppen.dat															-	٥	\times
File Edit	Transform Pl	ot Univariate	Multivariate	Model Dive	rsity Times	eries Geomet	ry Stratigraphy	Script Help)									
Show		Click mode		Edit	101	_	View											
Row att	ributes	Select		🄏 Cut		Paste	Bands											
Column	attributes	O Drag rows/o	olumns	Te Co	py 🧿	Select all	Black/whit	e (1/0)										
	Alter Studis	Alter Profs	С	D	E	F	G	н	1	J	К	L	м	Ν	0	Р	Q	
1	• 20	38																
2	• 20	43																
3	• 20	44																
4	• 21	49																
5	• 21	49																
6	• 22	49																
7	• 23	53																
8	• 23	54																
9	• 23	54																
10	• 24	54																
11	• 24	56																
12	• 24	56																
13	• 24	56																
14	• 24	58																
15	• 24	58																
16	• 24	59																
17	• 24	59																
18	• 24	59																
19	• 24	62																
20	• 24	64																
21	• 24	64																
22	• 24	64																
23	• 25	66																
24	• 25	66																
25	• 27	67																
26	•																	
27	•																	
28	•																	
29	•																	
30	•																	
31	•																	
<																		>

Erstellung vergleichender Box-Plots

> Plot > Barchart/Boxplot

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Wo befinden wir uns?

Hochschule für angewandte Wissenschaften

Christian Reinboth, Dipl.-Wi.Inf.(FH) Fachbereich Wirtschaftswissenschaften

Beispieldatensatz zur linearen Regression

Nr.	X	У
1	12	10000
2	15	15000
3	8	6000
4	11	11000
5	3	5000
6	17	23000
7	24	37000

Beispielfall mit bewusst gering gehaltener (Foliendarstellung...) Anzahl von Werten:

- x = Prozentualer Anteil des Werbebudgets eines Produkts am Gesamtbudget der Firma
- y = Verkaufte Einheiten des betrachteten
 Produkts in einem Untersuchungszeitraum
- Annahme: Das betrachtete Produkt, der Untersuchungszeitraum sowie das Gesamtbudget bleiben gleich

(ceteris paribus)

Wie lautet die Regressionsgleichung?

Ist ein Zusammenhang grafisch plausibel?

> Plot > XY graph

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Erstellung und Bewertung des LR-Modells

> Model > Linear > Bivariate

Was ist hier was?

Slope = Steigung (Regressionskoeffizient) Intercept = Schnittpunkt mit der y-Achse r^2 = Bestimmtheitsmaß / Gütekriterium

▲ Hochschule Harz Hochschule für angewandte Wissenschaften

Sichtbarmachung des Leverage-Effekts (Was eine kleine Änderung bewirken kann...)

Lineare Regression.da	at														-	٥	\times
File Edit Transform	Plot Univariate	e Multivariate	Model Dive	ersity Times	eries Geometr	y Stratigraphy	Script Help										
Show	Click mode		Edit	101		View											
Row attributes	Select		🐌 Ci	it 📑	Paste	Bands											
Column attributes	O Drag rows	columns/	n 👔	ру 🧿	Select all	Black/whit	e (1/0)										
x	у	С	D	E	F	G	н	1	J	К	L	М	Ν	0	Р	Q	
• 12	10000																
• 15	15000																
• 8	6000																
• 11	11000																
• 3	5000																
• 17	23000																
• 24	310 😽																
•																	
•	\sim																
• 0																	
1 •																	
2 •																	
3 •																	
4 •																	
5 •																	
6 •																	
7 •																	
8 •																	
9 •																	
• 0																	
1 •																	
2 •																	
3 •																	T
4 •																	1
5 •																	+
6 •																	+
7 •																	+
8 •																	+
9 •																	+
0 •																	+
1 .																	+
																	2

Sichtbarmachung des Leverage-Effekts

> Model > Linear > Bivariate

Wie deutlich verschlechtert sich hier r²?

Was kann andere (freie) Software (besser)?

Hochschule für angewandte Wissenschaften

Erstellung von Box-Plots mit SSP

> Describing Data > Median, Quartiles > Box-Plot

Schöne Übersicht der Konstruktionsgrößen – weniger ansehnlicher Box-Plot

Erstellung "schöner" Grafiken mit SOFA

> Diagramme > Balkendiagramm erstellen

Hochschule für angewandte Wissenschaften

Erstellung "schöner" Grafiken mit SOFA

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Detailergebnisse der Regression in PSPP

> Analysieren > Regression > Linear

🥌 Ziel — PSPPIRE Ausg	gabeanzeige																			-	o ×	
Datei Bearbeiten	Fenster H	Hilfe																				
REGRESSION R R	EGRESSION EGRESSION //ARIABL //DEPEND //BEHOD //STATISTI Modellzusamm R R- Quadra 95 .90 INOVA (y)	ES= x ENT= y =ENTER CS=COEFF (nenfassung Korrigien R-Quadr Quadratsun	CI R ANOVA (y) tes Stand des S 88 mme df	BCOV. lardfehle schätzers 3987,51 Mittel Quad	r 5 9 I der F rate	Sig.							GN									
к к	Regression Residual Gesamt	79504219 76942857	2,02 1 9,41 5 1,43 6	159008	843,88	43.88							U	P	S	P	P					
		Unstar Koel B	ndardisierte ffizienten Standardf	ehler	Standardisierte Koeffizienten Beta	t	Sig.	95% Konfidenzii für E Untere Grenze	otervall Obere Grenze				http	://wv	ww.ç	u gnu.	u org					
	(Konstante) x	-5234,18 1595,99	34 (24	0,63 2,29)0, 95,	-1,51 6,59	,181 ,001	-14130,01 973,16	3661,65 2218,82													
	Modell Kova	der Koeffizie x arianzen	nten (y)									<u>]</u> f	Tip ür S	die tati bes	PS Va stil	PF orb (II) de	P ei ere -Kla rer	gne eitu aus We	et s ng o sur i eise	ich der in e		

Kleine Vorschau auf Statistik II

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Simulation von Münzwürfen in SSP

> Uncertainty > Coin Flip Simulation

<u>Gesetz der Großen Zahlen</u>: Die relative Häufigkeit eines Zufallsergebnisses stabilisiert sich um die theoretische Wahrscheinlichkeit eines Zufallsergebnisses, wenn das zu Grunde liegende Zufallsexperiment immer wieder unter denselben Voraussetzungen durchgeführt wird.

Simulation von Würfelwürfen in SSP

> Uncertainty > Dice Roll Simulation

<u>Gesetz der Großen Zahlen</u>: Die relative Häufigkeit eines Zufallsergebnisses stabilisiert sich um die theoretische Wahrscheinlichkeit eines Zufallsergebnisses, wenn das zu Grunde liegende Zufallsexperiment immer wieder unter denselben Voraussetzungen durchgeführt wird.

Simulation eines Galtonbretts in SSP

Foto: Klaus-Dieter Keller; Lizenz: gemeinfrei; Quelle: Wikimedia

> Uncertainty > Galton's Apparatus

Mit Hilfe eines Galtonbretts lässt sich visuell demonstrieren, warum viele Zufallsvariablen der Bionomialverteilung folgen.

▲ Hochschule Harz Hochschule für angewandte Wissenschaften

Bestimmung der optimalen Stichprobengröße

- Was passiert bei....
 - größerer Grundgesamtheit?
 - kleinerer Grundgesamtheit?
 - bekannten Anteilswerten?
 - weniger Sicherheit?
 - mehr Sicherheit?

SampleSizer 1.2 -Menü Grundgesamtheit 20000 Stichprobenanteil 0,5 Wenn nicht bekannt p = 0,5 (50%-Schätzer) Intervallbreite (+/-) 0,03 Die Breite muss im Format 0,0x angegeben werden RISTIAN REV Bei einer Sicherheit des Konfidenzintervalls von 95%: Berechnen Stichprobengröße 1015 Ende http://www.statistikberatung.eu

Kostenloser Download unter: http://www.statistikberatung.eu/ SampleSizer.zip

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Einführung in freie statistische Software

Vielen Dank für die Aufmerksamkeit!

▲ Hochschule Harz

Hochschule für angewandte Wissenschaften

Christian Reinboth Telefon +49 3943 – 896 Telefax +49 3943 – 5896 E-Mail creinboth@hs-harz.de Friedrichstraße 57 – 59 38855 Wernigerode