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Abstract 

The optimization problem of bidirectional electrical vehicle charging (Vehicle-to-Home) 

becomes more and more important with rising energy prices and the required reduction 

of CO2 emissions. We maximize the usage of local solar power generation, while mini-

mizing the power grid usage. This is constrained by the energy demand of the house-

hold and the required state of charge at departure as well as the idle times of the car at 

home. The problem is formulated as a quadratic unconstrained binary optimization 

(QUBO) problem, which can be solved with the hybrid quantum-classical algorithm 

quantum alternating operator ansatz (QAOA). We show results for small problem in-

stances executed on a real device and a simulator. Additionally, we approximate the 

requirements of the problem on quantum computers for problem instances which are 

more realistic. 

1. Introduction 

Quantum Computing promises an advantage over conventional computing in solving 

many NP-hard problems faster, without changing their complexity class. The current 

generation of quantum computers is small in the number of qubits and noisy, and thus 

called near-term intermediate scale quantum computer (NISQ). Further, to make use of 

current generation quantum computers most of the programs are written on a very low 

abstraction level i.e., using a quantum circuit consisting of quantum gates. A gate can 

act on one or more qubits, and is a matrix, which is matrix multiplied onto a quantum 

state i.e., a vector. Multiple qubits are combined by the tensor product to a quantum 

register. A qubit can be measured in the state |0 = ! "10# or |1 = ! "01#, but could be 

without observation i.e., before measuring, in any state in between, which preserves the 

length of the vector. The most known gates are the Pauli gates $, % and &, which imple-

ment the Pauli matrices '(, ') and '*, the Hadamard gate + and the controlled not gate 

-./2. Pauli gates are rotations of 3 radians around the Bloch sphere. The Hadamard 

gate transforms the state |0  into the equal superposition. Lastly, the -./2 gate is a 

two-qubit gate, which leaves the targeted qubit in its state if the controlled qubit is in 

state |0  and does a bitflip on the targeted qubit if the controlled qubit is in state |1  
(Nielsen & Chuang, 2010). 

Hybrid algorithms are used to utilize current generations of quantum computers. They 

consist of a shallow parameterized quantum circuit, which is run on a quantum com-

puter, while the parameters are optimized on a classical machine. This process is re-

peated until an optimal parameter set is found, as illustrated in Figure 1 (McClean et al., 
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2016). One of those hybrid algorithms is the quantum alternating operator ansatz 

(QAOA), which we will use in this paper to solve the optimization problem of bidirectional 

EV-charging on a quantum computer.

The following of the paper is organized as follows: In Section 2 we present related work 

on the topic. Section 3 describes the problem, which we want to solve on the quantum 

computer. The 4th Section formulates the QUBO to solve the problem and describes the 

implementation in QAOA. In Section 5 we show our results of running the algorithm both 

on the simulator and on a real device. We conclude in Section 6 and give an outlook on 

further work.

Figure 1: Hybrid Algorithm adopted from (Schuld & Petruccione, 2018).

2. Related Work

When we want to solve optimization problems on a current generation quantum com-

puter, we have overall two options. On one hand we could use the variational quantum 

eigensolver (VQE) and on the other hand the quantum alternating operator ansatz 

(QAOA). However, VQE is more suited for optimization problems with quantum variables 

i.e., solving optimization problems in the quantum world, and QAOA is more suited to-

wards classical optimization problems (Moll et al., 2018).

A good example for industrial usage of QAOA is the paper by Volkswagen, solving the 

binary paint shop problem (Streif et al., 2020). Here, the authors showed, how an indus-

trial relevant problem could be mapped to an ising Hamiltonian, which was approxi-

mated by QAOA on a quantum computer. Further, they showed improvements against 

a classical heuristic i.e., the greedy algorithm.

In a previous work, we have optimized the charging schedule of battery electric service 

vehicles of the Erfurt airport on a quantum computer (Federer, Müssig, Klaiber, et al., 

2022). We’ve modeled the problem as a QUBO and solved it using QAOA. However, in 

this industrial use case we haven’t considered a bidirectional setting.

In a follow-up paper we have analyzed the results and investigated the complexity as 

well as the landscape of the cost function (Federer, Müssig, Lenk, et al., 2022). We have

found that the introduction of constraints increases the complexity of the landscape. 

Further, we have seen symmetries in the landscape of the cost function.
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The work by (Deller et al., 2022) also optimizes the charging schedule of electrical vehi-

cles using QAOA. However, instead of a direct mapping of the problem to a QUBO, the 

authors decided to map the problem to a graph coloring problem. Further, ideas were 

discussed on implementing constraints as conditional gates on ancilla qubits and by 

using a dynamical decoupling strategy. Lastly, the QAOA circuits were implemented 

with qudits instead of qubits, which enabled the authors to use integer instead of binary 

variables. 

3. Bidirectional EV-Charging 

In this paper we solve a very specific problem for bidirectional EV charging. First, we 

consider a vehicle to home (V2H) use case, where the car discharges only into the home 

and not into the grid. Further, we want to maximize the local usage of the solar power 

generation. Therefore, we use the battery of the electrical vehicle also as a battery of 

the house. We always want to fulfill the minimum charging amount 4567 and not exceed 

the maximum charging amount 458(. For each timestep 9 we have a maximum charging 

power :58(,; and a maximum discharging power :567,;. Further, we have the solar power 

generation <>; and the power demand of the house ?; with their difference <;. We min-

imize the cost function over the charging power :;@ and discharging power :;A. 

To solve this problem, we use Equation (1), which is a quadratic constrained integer 

optimization (QCIO) problem. 

BCDEF, DEGH = IJKL"CDEF M DEGH M NE#
O

E
 

 !"#$%&'&(: #)*+,& - #&. #)/0,& - #&% 

$)*+ 1 2#&% 3 #&.&
1 $)/0 

#&%#&. = 4 

(1) 

We have the following constraints from top to bottom: we are not allowed to discharge 

more than our maximum discharging power, we are not allowed to charge more than 

our maximum charging power, overall, we must fulfill the minimum charging amount 

and shall not exceed the maximum charging amount, and we are not allowed to charge 

and discharge at the same time step. 

We decided to formulate the problem as a QCIO problem, because it can be translated 

into a quadratic unconstrained binary optimization problem (QUBO), which can be 

solved with QAOA. 

4. Formulation of the QUBO and Implementation of QAOA 

The quantum alternating operator ansatz (QAOA) formerly known as quantum approxi-

mate optimization algorithm approximates the optimal solution of combinatorial optimi-

zation problems by mapping them to find the ground state of an Ising Hamiltonian (Wei-

denfeller et al., 2022). 

QUBOs have a close relation to Ising Hamiltonians. Thus, we start with a reformulation 

of our QCIO into a QUBO. In Equation (2) we introduce three variables, which hold the 
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required bits for 567, 568 and 9 respectively. For each time step and each variable, we 

calculate the minimum required number of bits, to utilize the least number of qubits on 

a quantum computer. Further, if we have a constraint, where a number must be zero, 

we set it zero and do not use a qubit to store this information. 

"& =' ;<(>?@#)/0& A BCD %& =' ;<(>?@#)*+,& A BCD E = F<(>?G$)/0 3 $)*+ A BHI (2) 

Equation (3) and (4) calculate the charging and discharging power for each time step. 

The second summand reflects the integer value represented by the binary variables JK 
at 5LMN and OK at 5LKP respectively. This assures constraint 1 and 2 in Equation (1). 

#&% =' 2 ?*0*,&
"&Q?

*R4
A @#)/0,& 3 ?"&QB A BC0"&QB,& (3) 

#&. =' 2 ?*S*,&
%&Q?

*R4
A @#)*+,& 3 ?%&QB A BCS%&QB,& (4) 

Equation (5) introduces a slack variable, which is later used in the second penalty term.  

T = '2?*U*
EQ?

*R4
A G$)/0 3 $)*+ A BH (5) 

In the following Equation (6) introduces a QUBO version of Equation (1). The first part 

still looks the same as the sum in Equation (1). However, we have used the bionomic 

formula to prepare it already for the Ising formulation. VW and VX are penalty factors, 

where the corresponding penalty terms help us removing the constraints. In particular, 

the first penalty term is a reformulation of constraint 4 and the second is a reformulation 

of constraint 3. 

YG0, S, UH = Z[\2]#&%? A #&.? 3 ?#&%^& A ?#&.^& A ^&?_
&

A`B a2#&%#&.&
b

A `? a2@#&% 3 #&.C&
3 T3 $)*+b

X
 

(6) 

To encode our QUBO into an Ising Hamiltonian we shift our binary variables JK, OK and 

cK to 
WQdNeX , 

WQdfeX  and 
WQddeX  with cJK, cOK , ccK g {3h,h}. Afterwards, we substitute these var-

iables with id (Moll et al., 2018). The Pauli-j operator is used since it has the eigenvec-

tors |kl and |hl with the corresponding eigenvalues h and 3h. 

To find the ground energy of an Ising Hamiltonian mn with QAOA we also need a mixing 

Hamiltonian mo. A typical mixing Hamiltonian is mo = p iqNrqRW  since we can easily pre-

pare its ground state, which is the equal superposition of all states. Thus, the QAOA is 

initialized with Hadmard gates on each qubit. A s-level QAOA circuit consists of mn and mo alternating s times to approximate adiabatic quantum annealing via Trotterization. 

Therefore, we parameterize each Hamiltonian. The convention is to use t for the Ising 
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or problem Hamiltonian ranging from k to uv and w for the mixing Hamiltonian ranging 

from k to v. A formal description of QAOA would be x = x@mo, wyC z x@mn , tyC z � zxGmo, wWH z xGmn , tWH and is shown in Figure 2 (Zhou et al., 2020).

Figure 2: A p-level QAOA with alternating UC und UB.

Since we have now constructed the QAOA circuit, the next step is to optimize the pa-

rameters to find the ground state of the problem Hamiltonian. Therefore, we calculate 

the expectation value  !(", #) = $%!(", #)|&'|%!(", #)* in each iteration for the current 

best parameters. In our classical optimization loop we use a classical nonlinear opti-

mizer, which does not require the derivative of the cost function like COBYLA or SPSA, 

to find the best parameter set regarding the smallest expectation value.

5. Results

We have implemented our QAOA for bidirectional charging with the Qiskit Runtime pro-

gram for QAOA with the classical optimizer SPSA, since it can be executed as one job 

within the IBM Quantum Experience and does not require a single job for each iteration

(Weidenfeller et al., 2022). The advantage of having only one job, which must be exe-

cuted, is, that we only need to be once in the queue for each experiment. Waiting times 

in queues for today’s public cloud quantum computers range from a couple of minutes 

to sometimes even days. Thus, it is currently not viable to run a hybrid quantum algo-

rithm without a reservation of the quantum computer.

Our experiments consist of five problem instances, which were solved with IBMs CPLEX 

solver, which gives an optimal result, with the IBM QASM Simulator, which is a noiseless 

simulator and on IBMQ Ehningen, which is a real 27-qubit machine deployed in Ger-

many. On the two devices we used a two-layer QAOA algorithm. The results are shown 

in Table 1. We have listed in the first column the data of the experiments. The second 

column lists the results for the CPLEX solver, which is an exact solution and was always 

the same result in multiple runs. Columns three and four list the results on the IBM 

QASM Simulator and on IBMQ Ehningen respectively. We have done multiple runs on 

both devices and used 1024 shots, which means, that the circuit was run 1024 times to 

establish an expectation value. From the 1024 shots we have taken the best solution

and calculated the average probability within the shots over all runs.

The first experiment requires two qubits. There is only one feasible solution, which was 

found on all three solvers. The achieved probability for the best state was higher than 

equal superposition, for both the simulator and the calculations on the real quantum 

device, which would have led to a probability of ~25+. Experiment 2 requires four 

qubits. Here, the probability distribution for the equal superposition would have been 

~3.125+ and again we see better results on both devices. However, we also see, that 

the QASM Simulator has a lower probability distribution. Experiments three, four and 

five required seven qubits. We have chosen this as the maximum number of qubits for 
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our experiments, because we had intended to use a free 7-qubit machine. However, 

since the queue times were to long, we switched to the paid IBMQ Ehningen machine. 

In the last three experiments the probability distribution for an equal superposition 

would have been ~0.781+. We see that the results are better or near that value. 

 optimal result QASM Simulator IBMQ Ehningen 

- = [/, 4] 
69:; = [/, /] 
69<> = [4, /] 
?9:; = / 

?9<> = 4 

@A = [0,0] 
@B = [0,0] 
C = D0 

E(F, G, H) D= D1 

@A = [0,0] 
@B = [0,0] 
C = D0 

E(F, G, H) = 1 

IJKL.= D~51,85+ 

@A = [0,0] 
@B = [0,0] 
C = D0 

E(F, G, H) = 1 

IJKL.= D~MM.MN+ 
- = [4,O ,  ] 
!"#$ = [%, %, %] 

!"&' = [ ,  ,  ] 

("#$ =   

("&' =   

)* = [1,0,0] 

)+ = [0,0,0] 

- = .0 

/23, 4, 56 .= .7 

)* = [1,0,0] 

)+ = [0,0,0] 

- = .0 

/23, 4, 56 = 7 

89:;<= .~>,17? 

)* = [1,0,0] 

)+ = [0,0,0] 

- = .0 

/23, 4, 56 = 7 

89:;<= .~1@,A0? 
B = [ ,C ,  ] 
!"#$ = [ ,  , %] 

!"&' = [ ,  ,  ] 

("#$ =   

("&' = D 

)* = [1,0,1] 

)+ = [0,1,0] 

- = .0 

/23, 4, 56 .= .0 

)* = [1,0,1] 

)+ = [0,1,0] 

- = .0 

/23, 4, 56 = 0 

89:;<= .~1,0>? 

)* = [1,0,1] 

)+ = [0,1,0] 

- = .0 

/23, 4, 56 = 0 

89:;<= .~7,0E? 
B = [ ,C ,  ,C ] 
!"#$ = [%,  , %,  ] 

!"&' = [ ,  ,  , %] 

("#$ =   

("&' = D 

)* = [1,0,1,0] 

)+ = [0,0,0,1] 

- = .0 

/23, 4, 56 .= .1 

)* = [1,0,1,0] 

)+ = [0,0,0,1] 

- = .0 

/23, 4, 56 = 1 

89:;<= ~1,0>? 

)* = [1,0,1,0] 

)+ = [0,0,0,1] 

- = .0 

/23, 4, 56 = 1 

89:;<= ~1,FG? 
B = [ ,C , H] 

!"#$ = [ ,  , %] 

!"&' = [ ,  , H] 

("#$ = D 

("&' = H 

)* = [1,0,@] 

)+ = [0,1,0] 

- = .1 

/23, 4, 56 .= .0 

)* = [1,0,@] 

)+ = [0,1,0] 

- = .1 

/23, 4, 56 = 0 

89:;<= ~1,0>? 

)* = [1,0,@] 

)+ = [0,1,0] 

- = .1 

/23, 4, 56 = 0 

89:;<= ~0,AF? 

Table 1: Results of our five experiments of the bidirectional EV charging QAOA algorithm. 

Overall, the results show, that we have found the optimal solution on both devices for 

all five experiments. However, we can also see, that the probabilities of finding the op-

timal solution within the 1024 shots in the last three experiments is very low. Further, 

only for the first experiment the optimal solution was also the most frequent. The low 

probabilities in the noiseless QASM Simulator suggests that the settings of the QAOA 

approach and its optimizer needs to be optimized and that our use case is hard-to-

solve due to the global constraints involved. 

6. Conclusion and Future Work 

In this paper we have formulated a QUBO for the optimization problem of bidirectional 

EV charging. The QUBO was solved with a two-layer QAOA algorithm on a QASM Sim-

ulator and on the real device IBMQ Ehningen, where we found the optimal solution for 

all five experiments. 

One of the next steps will be a different implementation of the penalty terms e.g., with 

dynamic decoupling approaches (Deller et al., 2022). From this we expect to reduce the 

complexity of the QUBO and to achieve higher probabilities for the optimal solution. 
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Further, a next step would be the usage of qudits instead of qubits. With this we would 

not need to convert the integers first into binaries. Also, an implementation of the QUBO 

and the problem instances in QBench (Müssig, Daniel & Lässig, Jörg, 2022) is planned. 

This will help us understand better the differences between the noiseless QASM Simu-

lator and the real devices. Further, we could investigate device specific influences. 

Lastly, it would be also interesting to compare results from the superconducting hard-

ware of IBM to other technologies and architectures like IonQs trapped ions or XANA-

DUs photonics. Nevertheless, a comparison with D-Waves quantum annealer would be 

also from great interest. 
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