
Dog Recognition 
System in Python
The Dog shelter - Fifth leg (penktakoja.lt) is a project that 

hopes to spread warmth and companionship to homeless dogs 

and cats. On average, this dog shelter takes in about 800 dogs 

of various ages and breeds per year. About 600 hundred 

individuals are donated or adopted by dog lovers. The rest are 

under the care of shelter workers.

by Virgilijus Sakalauskas and Dalia Kriksciuniene

Project EPSILON was co-funded by the European Union (2021-1-DE01-KA220-HED-000029711). All 
views and opinions expressed are however those of the author(s) only and do not necessarily reflect 
those of the European Union or DAAD. Neither the European Union nor the granting authority can be 
held responsible for them.



preencoded.png

Dog Recognition System: 
Purpose
The purpose of this project is to take care of homeless or lost dogs who 

may have been in the dog shelter "Pekta koja" and are photographed and 

registered there. The idea of the project is to try to identify a lost dog 

based on a database of dog photos in “Penkta koja” shelter.

Goal

To identify a lost dog based on a database of dog photos.

Method

Leverage computer vision and machine learning to create a model 

that can compare a new dog's photo with the photos in the existing 

database and recognize the dog.

https://gamma.app/?utm_source=made-with-gamma


Implementation



Organizing Dog Photos

We propose to set up a folder structure where each dog has its own labeled folder - create a root folder, and 

inside it, create subfolders for each dog. Each subfolder should contain multiple images of that specific dog.

Root Folder

Contains subfolders for each dog.

Subfolders

Each subfolder represents a specific dog and 

contains multiple images of that dog.



preencoded.png

Preprocessing

In the Preprocessing step, resizing and normalizing the image are crucial operations 

to prepare the image for input into a machine learning model (e.g., a Convolutional 

Neural Network like VGG16). These steps ensure that all images fed into the model 

have a consistent format and data range, which improves the model's performance 

and reliability. The resizing and normalizing the images we perform by Pillow (PIL) 

library.

1 Resizing

Dog images usually vary in size. As the learning models like VGG16, ResNet, or 

MobileNet expect input images to be of a fixed size (e.g., 224x224 pixels for 

VGG16) we need to resize original images.

2 Normalizing

Pixel values in an image typically range from 0 to 255 (for 8-bit images). 

Different images can have widely different pixel intensity distributions. 

Normalization scales these values to a consistent range, often between 0 and 1 

or around a zero-centered value, making it easier for the model to interpret 

the image data.

https://gamma.app/?utm_source=made-with-gamma


Feature Extraction
Feature extraction is the process of converting an image into a set of numerical values (a feature vector) that represent the most important 

information about the image. The neural network focuses on important patterns, like edges, textures, shapes and help identify key 

characteristics of the dog, such as the shape of its ears, face structure, fur patterns, and more.

We use a pre-trained CNN like VGG16 that has already been trained on a large dataset like ImageNet, which contains millions of images across 

thousands of categories. These pre-trained models have learned to extract general features from images that can be reused for specific tasks like 

dog recognition.

A pre-trained CNN consists of multiple layers, each responsible for extracting different levels of features:

Lower Layers

Detect simple patterns, like edges, corners, 

and textures.

Middle Layers

Detect more complex patterns, like shapes 

and parts of objects (e.g., dog ears, eyes).

Higher Layers

Detect entire objects or very specific 

patterns, which are helpful for 

classification.



preencoded.png

Database
A feature vector is a set of numerical values vector that captures 

the important traits of an image, such as patterns, textures, and 

shapes. These feature vectors are generated by the CNN model 

during the feature extraction step and serve as a compressed, 

abstract representation of the dog.

For example, after extracting features using VGG16, a feature 

vector for a dog image might look like this:

Dog ID Feature Vector Label

Dog1 [0.12, 0.34, 0.56, ..., 0.91] Labrador Retriever

Dog2 [0.21, 0.45, 0.67, ..., 0.89] Golden Retriever

We store these feature vectors and labels using NumPy library in a simple 
format like a NumPy array database where each row corresponds to a 
different dog. Alongside the features, you also keep a list of dog labels. 

https://gamma.app/?utm_source=made-with-gamma


Comparison
Once the database is set up, we utilize scikit-learn library for algorithms like K-Nearest Neighbors (KNN) to compare the input 

dog's feature vector with all the stored feature vectors in the database. The algorithm calculates the similarity between the input 

vector and each stored vector, and the most similar one is identified as the matching dog.

In the K-Nearest Neighbors (KNN) algorithm, you don't rely on just one closest match. Instead, the algorithm considers the K 

closest matches to make a decision. Here are the most popular measures:

Euclidean Distance

The straight-line distance between two 

vectors in the feature space.

Manhattan Distance

The sum of the absolute differences 

between coordinates of the vectors.

Cosine Similarity

The cosine of the angle between two 

vectors, focusing on their orientation in 

the space.



preencoded.png

Output

The Recognize the Dog step is the final part of the dog recognition 

system using the K-Nearest Neighbors (KNN) algorithm. In this step, 

the system determines which known dog is the best match for the new 

dog image and provides that as the output.

1 Match

The system determines which known dog is the best match for 

the new dog image and provides that as the output.

2 Unknown Dog

If no dog’s distance is below the threshold (in our case 500), the 

system reports that the dog is unknown.

https://gamma.app/?utm_source=made-with-gamma


Strengths and Improvements

The implemented dog recognition system is a strong foundation for 

recognizing dogs based on image similarity. By combining deep feature 

extraction with KNN and an intuitive graphical interface, it provides a balance 

between accuracy and simplicity.

1 Strengths

Accuracy and Robustness, Simplicity with KNN, Extensibility, Unknown 

Dog Detection.

2 Improvements

Fine-tuning the Threshold, Data Augmentation, Handling Larger 

Databases, Improving Recognition with Fine-Tuning, Real-Time 

Recognition, GUI Enhancements.



Python program




	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

